Catalogue of Artificial Intelligence Techniques

   

Jump to: Top | Entry | References | Comments

View Maths as: Images | MathML

Inductive Logic Programming

Keywords: learning

Categories: Learning , Logic Programming


Author(s): Steve Muggleton

Inductive Logic Programming (ILP) encompasses a set of techniques from machine learning and Logic Programming. ILP systems develop predicate descriptions from examples and background knowledge. The examples, background knowledge and final descriptions are all described as logic programs. A unifying theory of Inductive Logic Programming is being built up around lattice-based concepts such as refinement, Least General Generalisation, Inverse Resolution and most specific corrections. In addition to a well established tradition of learning-in-the-limit results, some results within Valiant's PAC-learning framework have been demonstrated for ILP systems. Presently successful applications areas for ILP systems include the learning of structure-activity rules for drug design, finite-element mesh analysis design rules, primary-secondary prediction of protein structure and fault diagnosis rules for satellites.


References:


Comments:

Add Comment

No comments.